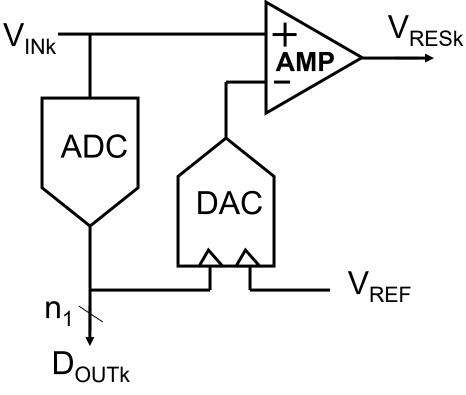
EE 505


Lecture 24

ADC Design – Pipeline

Review from last lecture

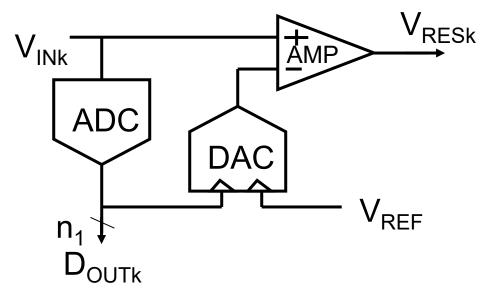
Pseudo-Static Time-Invariant Modeling of a Linear Pipelined ADC

Parameterization of Stage k •Amplifier V_{INk}- Closed-Loop Gain •From input – m1k •From DAC – m2k •From offset – m3k •Offset Voltage - V_{OSk} •DAC •V_{DACki} •ADC Offset Voltages - V_{OSAki} •Out-Range Circuit (if used and not n_1 included in ADC/DAC) •DAC Levels - V_{DACBki} •Amplifier Gain – m4k

Review from last lecture Solution of the 2n Linear Equations

$$V_{in} = \left\{ \frac{d_{1} \left[\left(\frac{m_{21}}{m_{11}} \right) V_{DAC1} \right] + d_{2} \left[\left(\frac{m_{22}}{m_{11}m_{12}} \right) V_{DAC2} \right] + ... + d_{n} \left[\left(\frac{m_{2n}}{m_{11}m_{12}...m_{1n}} \right) V_{DACn} \right] + \frac{V_{REF}}{2^{n+1}} \right\}$$

$$\left\{ \frac{m_{31}}{m_{11}} V_{OS1} + \frac{m_{32}}{m_{11}m_{12}} V_{OS2} + ... + \left(\frac{m_{3n}}{m_{11}m_{12}...m_{1n}} \right) V_{OSn} \right\}$$

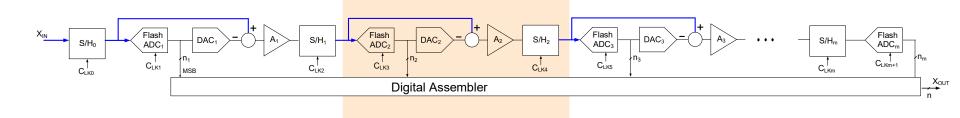

$$\left\{ \frac{V_{RESn}}{m_{11}m_{12}...m_{1n}} - \frac{V_{REF}}{2^{n+1}} \right\}$$

$$Code-independent offset term offset term$$

Note: Will not even include last residue amplifier nor create V_{RESn}

Note: ADC errors do not affect linearity performance of pipelined structure but DAC outputs and weights are critical

Pseudo-Static Time-Invariant Modeling of a Linear Pipelined ADC



If more than 1 bit/stage is used and DAC is binarilyweighted structure

$$V_{_{RESk}} = m_{_{1k}}V_{_{ink}} + m_{_{2k}}\left(\sum_{_{j=1}^{2^{n_{k}}-1}}d_{_{kj}}V_{_{DACkj}}\right) + m_{_{3k}}V_{_{OSk}}$$

Review from last lecture

Pipelined ADC

Claim: If the Amplifiers are linear, settling is complete, and over-range protection is provided, the pipelined ADC makes no nonlinearity errors if the output of the DACs are correctly interpreted

Implication: Flash ADC errors, offsets in comparators and amplifiers, and gain errors in amplifier and S/H do not degrade linearity performance of a well-designed pipelined ADC structure !!

Review from last lecture Observations

$$V_{in} = \sum_{k=1}^{n} \alpha_k d_k + f(\text{offset}) + f(\text{residue})$$

form of $\alpha_k : V_{\text{DACk}} \frac{m_{2k}}{\prod_{j=1}^{k} m_{1j}}$

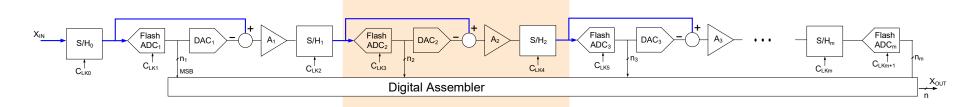
- Substantial errors are introduced if α_k are not correctly interpreted!
- Some calibration and design strategies focus on accurately setting gains and DAC levels
- Analog calibration can be accomplished with either DAC level or gain calibration
- Digital calibration based upon coefficient identification does not require accurate gains or precise DAC levels

Review from last lecture Observations (cont)

$$V_{in} = \sum_{k=1}^{n} \alpha_k d_k + f(offset) + f(residue)$$

 $\begin{array}{lll} \text{form of} & \alpha_k \, : \, V_{\text{DACk}} \frac{m_{2k}}{\displaystyle\prod_{j=1}^k m_{1j}} \end{array}$

- If nonlinearities are avoided, data conversion process with a pipelined architecture is extremely accurate
- Major challenge at low frequencies is accurately interpreting the digital output codes


Review from last lecture Observations (cont)

$$V_{in} = \sum_{k=1}^{n} \alpha_k d_k + f(offset) + f(residue)$$

 $\begin{array}{lll} \text{form of} & \alpha_k \, : \, V_{\text{DACk}} \frac{m_{2k}}{\displaystyle\prod_{j=1}^k m_{1j}} \end{array}$

• If nonlinearities are present, this analysis falls apart and the behavior of the ADC is unpredictable !

Intuitive View of Why Sub-ADCs do Not Cause Nonlinearity Errors

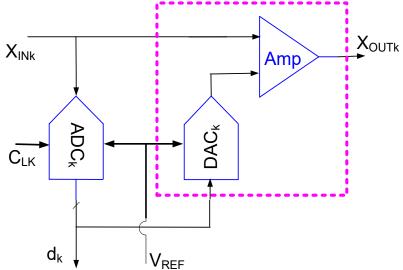
Claim: If the Amplifiers are linear, settling is complete, and over-range protection is provided, the pipelined ADC makes no nonlinearity errors if the output of the DACs are correctly interpreted

for 1 bit/stage

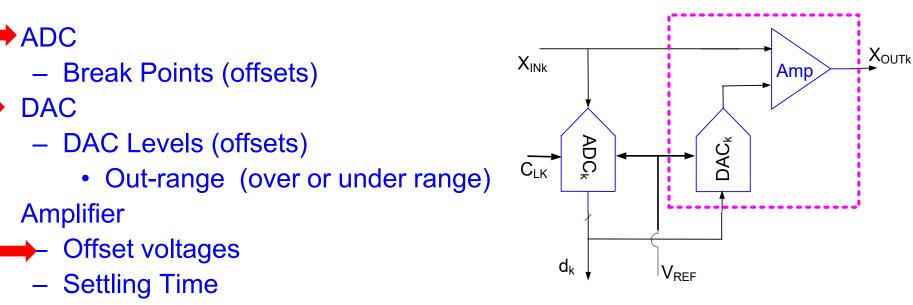
V,

$$_{n} = \left\{ d_{1} \left[\left(\frac{m_{_{21}}}{m_{_{11}}} \right) V_{REF} \right] + d_{2} \left[\left(\frac{m_{_{22}}}{m_{_{11}}m_{_{12}}} \right) V_{REF} \right] + \dots + d_{n} \left[\left(\frac{m_{_{2n}}}{m_{_{11}}m_{_{12}}\dots m_{_{1n}}} \right) V_{REF} \right] + \frac{V_{REF}}{2^{n+1}} \right\} + V_{OSEQ} + \epsilon$$

- ADCs determine whether a quantity is or is not subtracted from V_{REF} at each stage but the DAC determines how much is subtracted
- Keep subtracting smaller-and-smaller quantities from V_{IN} until residue is approx. 0 at end of last stage (and error caused by last sub-ADC will be small)
- If we know how much is subtracted from V_{IN} until residue vanishes, we know V_{IN}
- Over-range protection recovers errors caused by subtracting too much or too little


Performance Limitations of Pipelined ADCs (consider amplifier, ADC and DAC issues)

- XINk Break Points (offsets) DAC Levels (offsets) C_{LK} Out-range (over or under range) Amplifier
 - Offset voltages
 - Settling Time

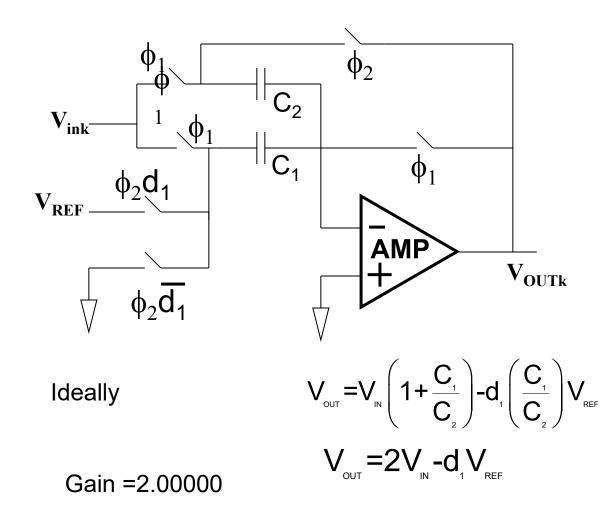

ADC

DAC

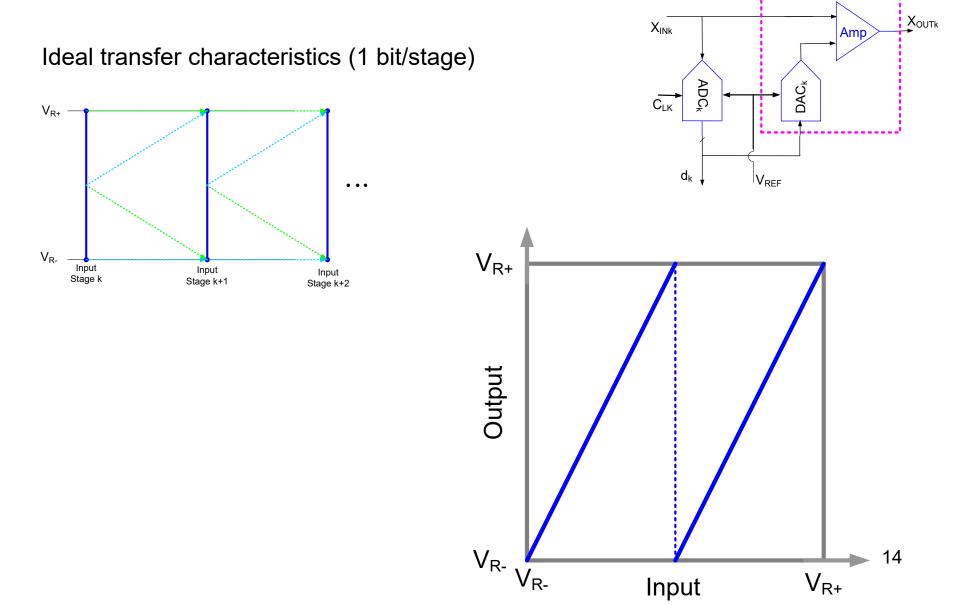
- Nonlinearity (primarily open loop)
 - Open-loop
 - Out-range
- Gain Errors
 - Inadequate open loop gain
 - Component mismatch
- Power Dissipation
- kT/C switching noise

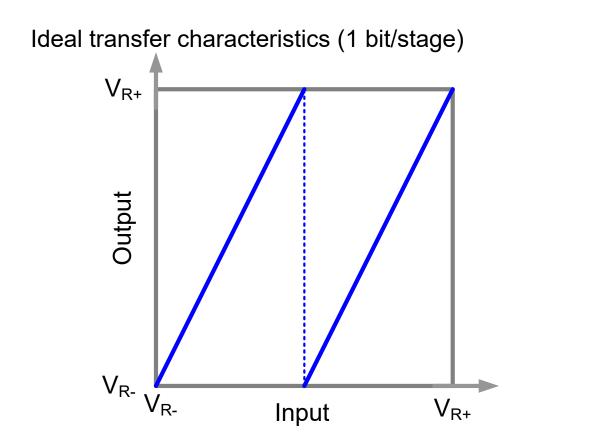
Performance Limitations of Pipelined ADCs (consider amplifier, ADC and DAC issues)

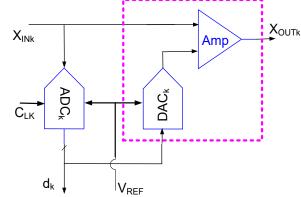
- Nonlinearity (primarily open loop)
 - Open-loop
 - 🔶 Out-range
- Gain Errors
 - Inadequate open loop gain
 - Component mismatch
 - Power Dissipation
 - kT/C switching noise


Pipelined Data Converter Design Guidelines

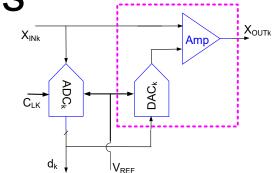
Issue

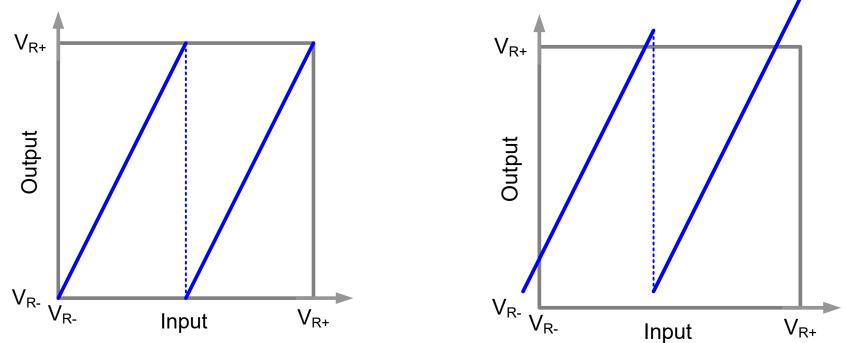

Strategy


1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate


Typical Finite-Gain Inter-stage Amplifier (shown single-ended with 1-bit/stage)

13

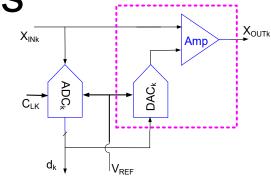


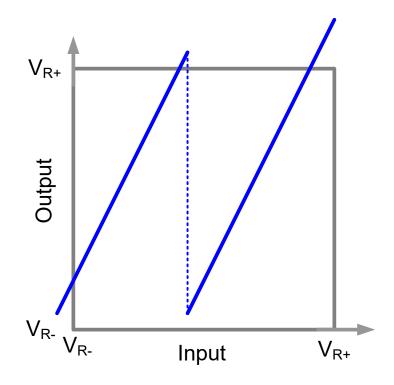


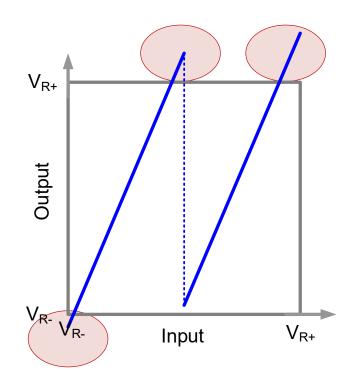
But what really happens?

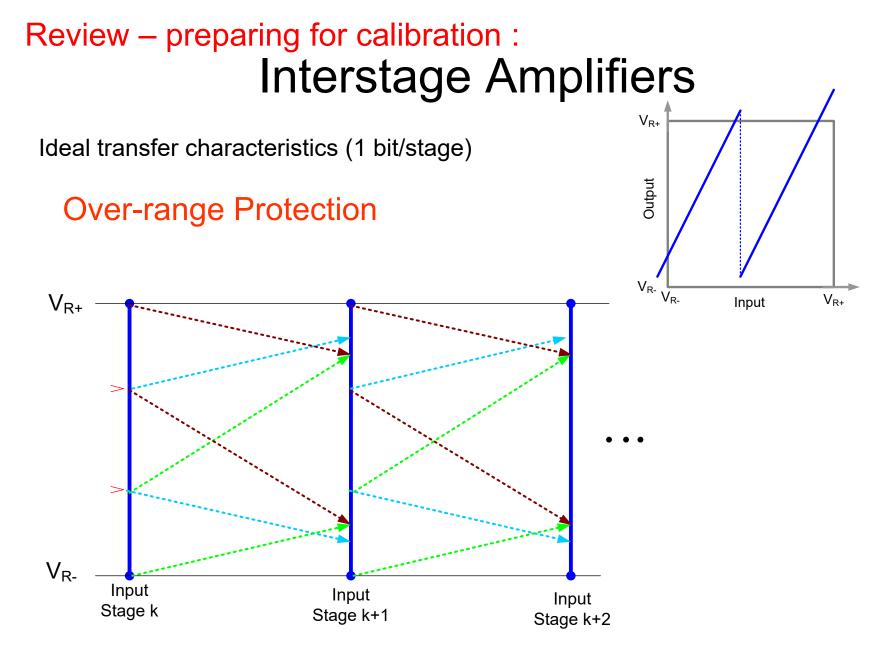
Ideal transfer characteristics (1 bit/stage)

What are the effects of these errors?

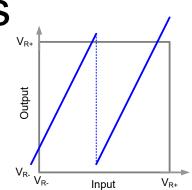


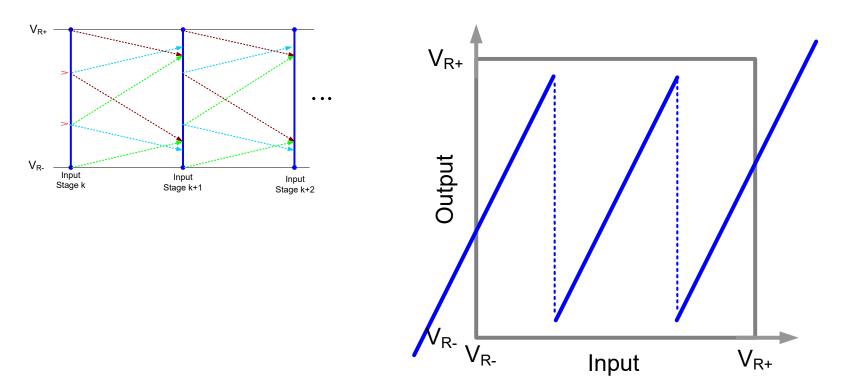



Effects of Simultaneous Errors

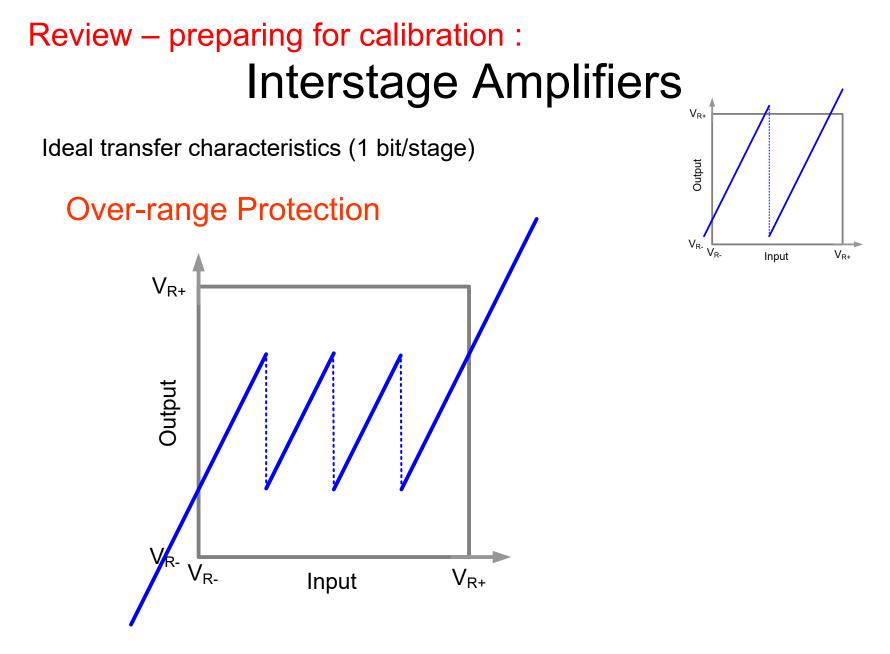

Ideal transfer characteristics (1 bit/stage)

What are the effects of these errors?

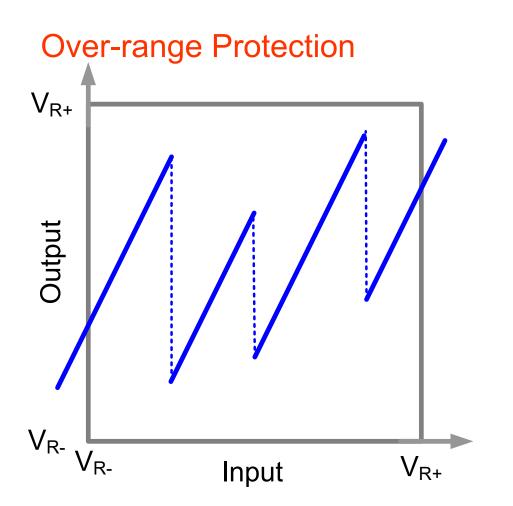


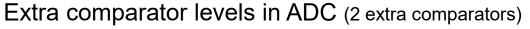


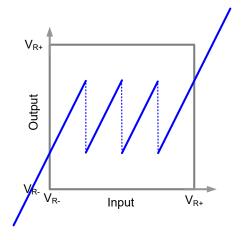
Extra comparator levels in ADC

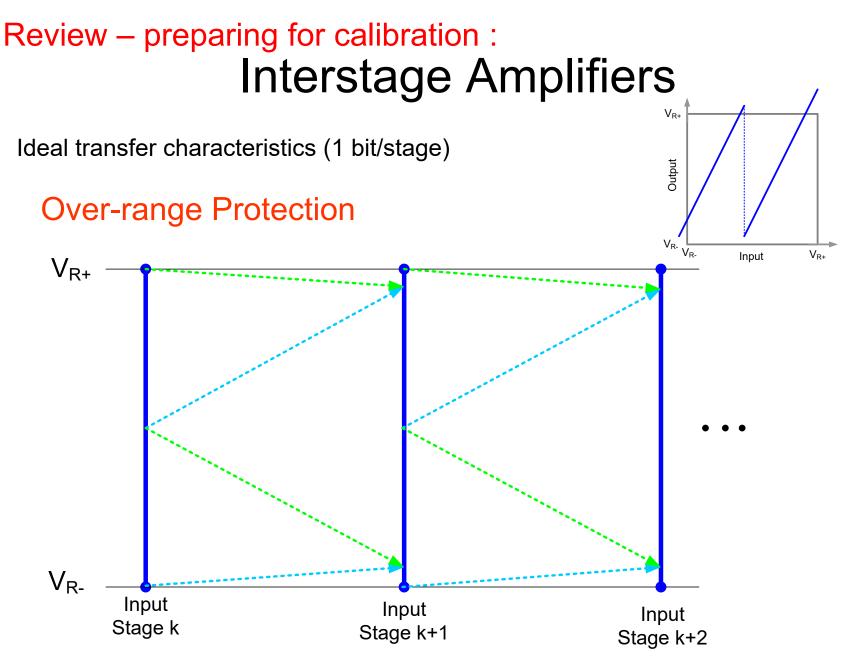

Ideal transfer characteristics (1 bit/stage)

Over-range Protection




Extra comparator levels in ADC (1 extra comparator)




Extra comparator levels in ADC (2 extra comparators)

Ideal transfer characteristics (1 bit/stage)

Sub-radix Structure

Pipelined Data Converter Design Guidelines

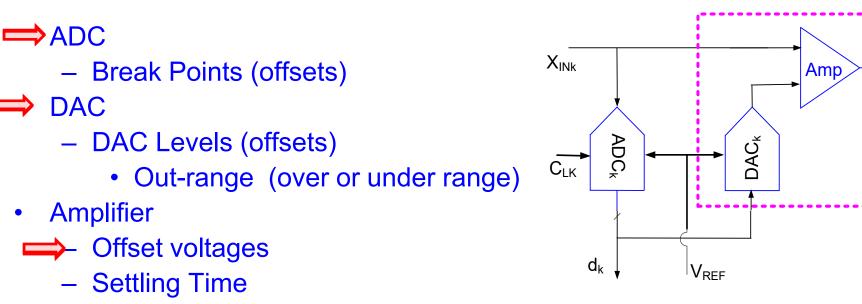
Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate

Strategy

- 1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures

Pipelined Data Converter Design Guidelines

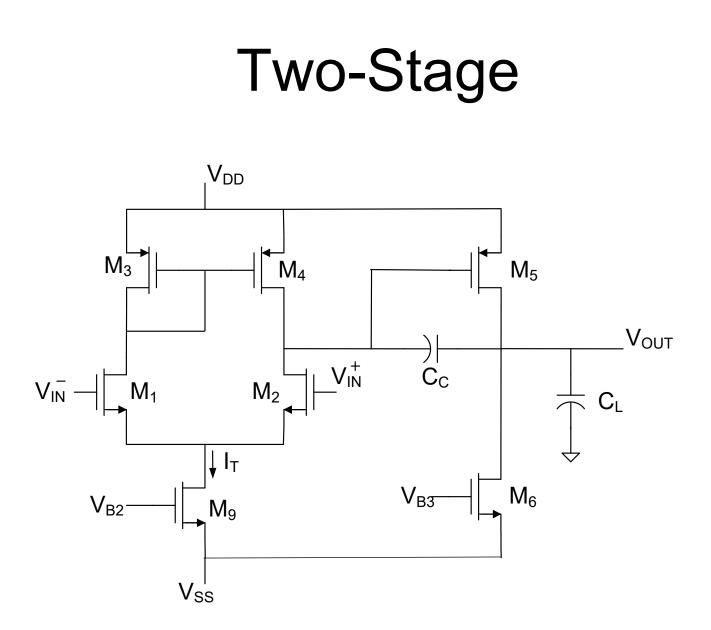

Issue

- 1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
- 2. Correct interpretation of α_k 's is critical

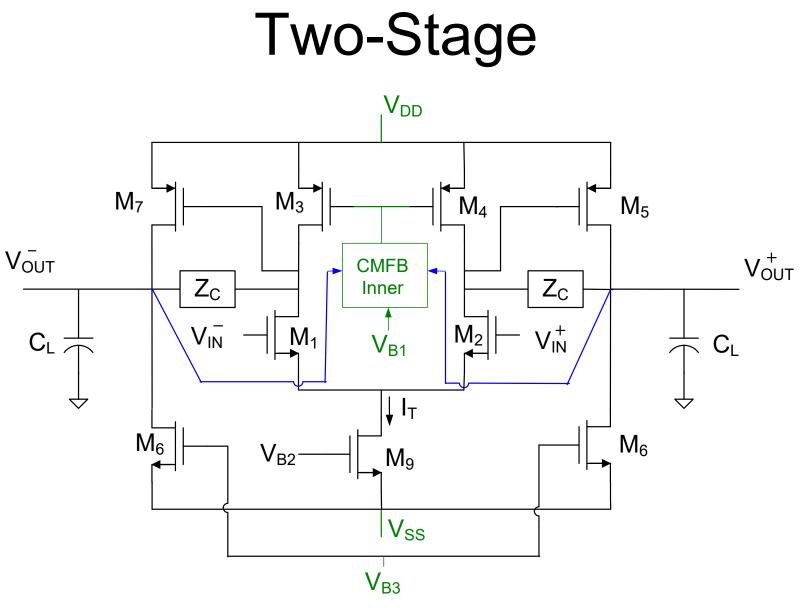
Strategy

- 1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. a) Accurately set α_k values
 - b) Use analog or digital calibration

Performance Limitations of Pipelined ADCs (consider amplifier, ADC and DAC issues)

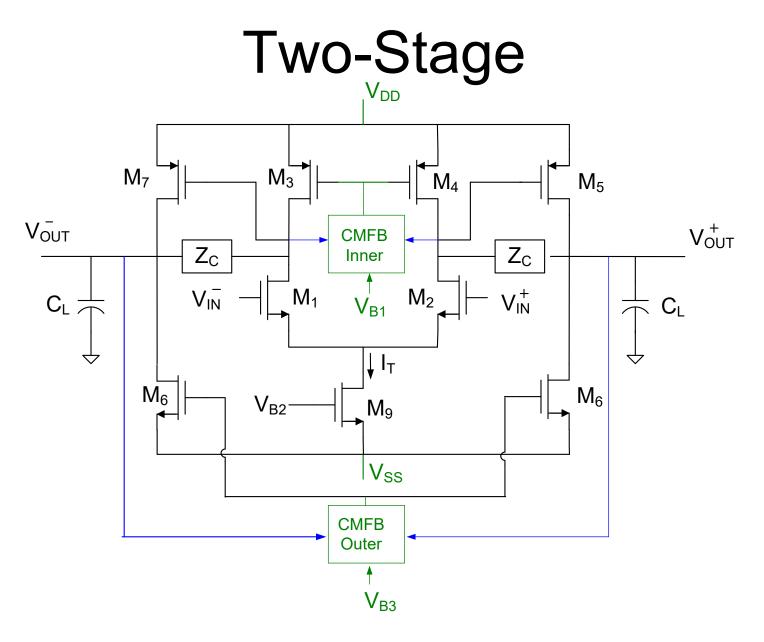


- Nonlinearity (primarily open loop)
- Open-loop
- ➡ Out-range
- → Gain Errors
 - Inadequate open loop gain
 - Component mismatch
 - Power Dissipation
 - kT/C switching noise

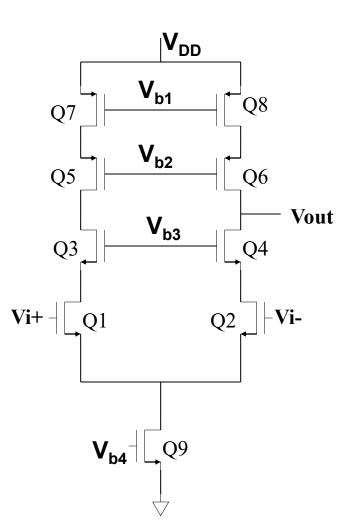

X_{OUTk}

Amplifier Types used In Pipelined ADCs

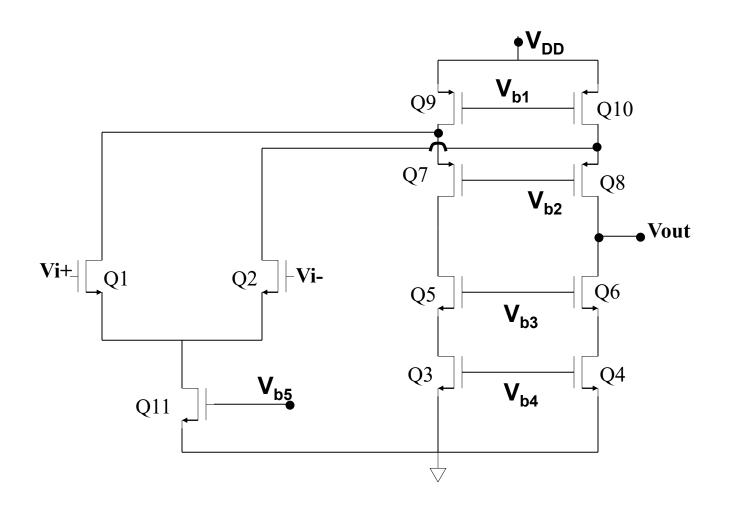
- Two-stage
- Cascode
 - Telescopic
 - Folded
- Regulated Cascode (Gain-boosted Cascode)
 - Telescopic
 - Folded
- Regenerative Feedback Gain Enhancement
- Two-Stage Cascode



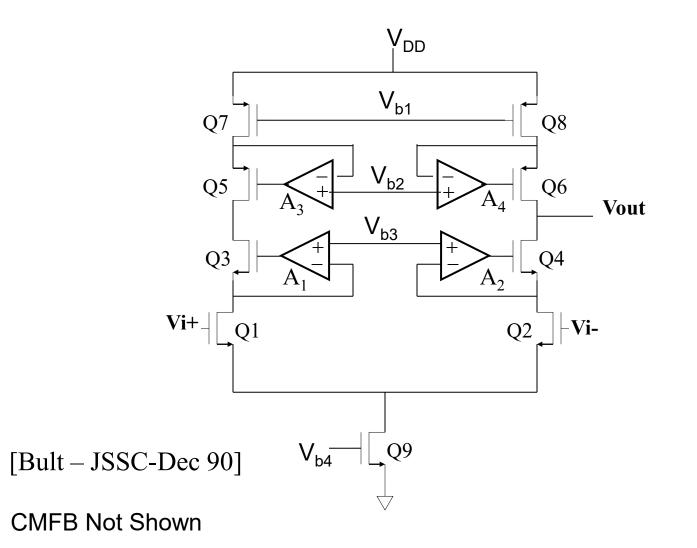
Single-Ended Output


Fully Differential

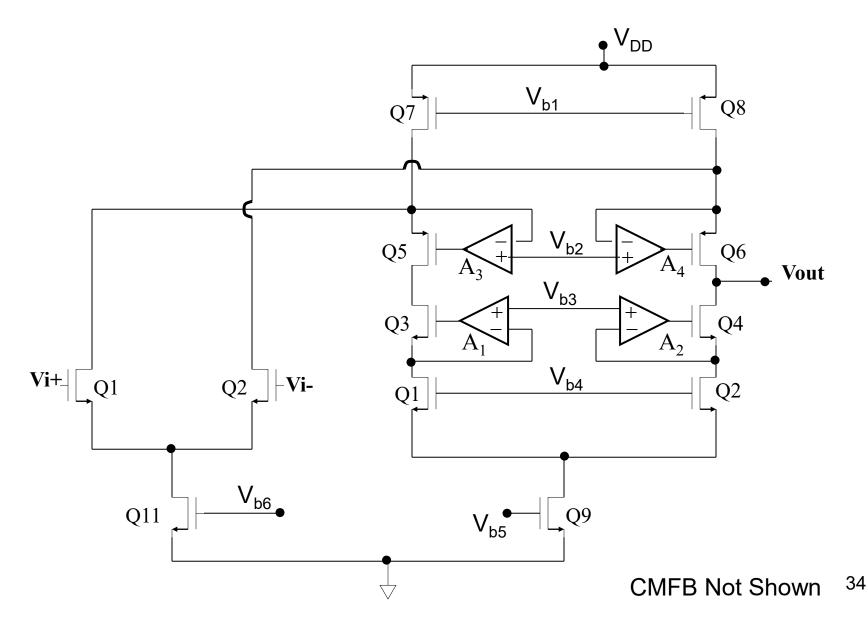
29


Fully Differential

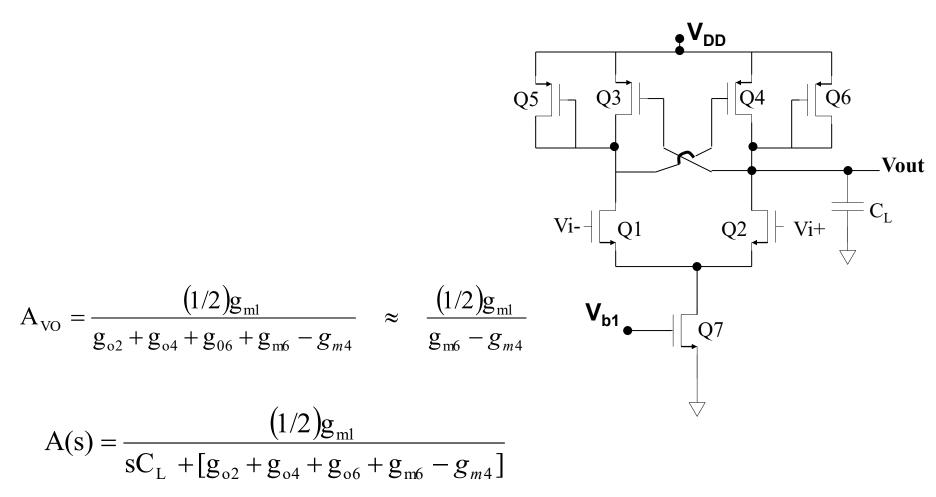
Telescopic Cascode

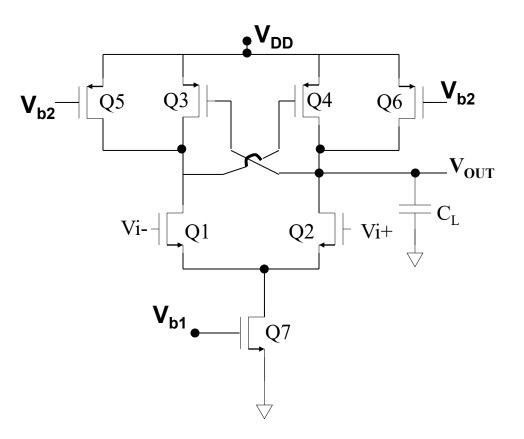

CMFB Not Shown

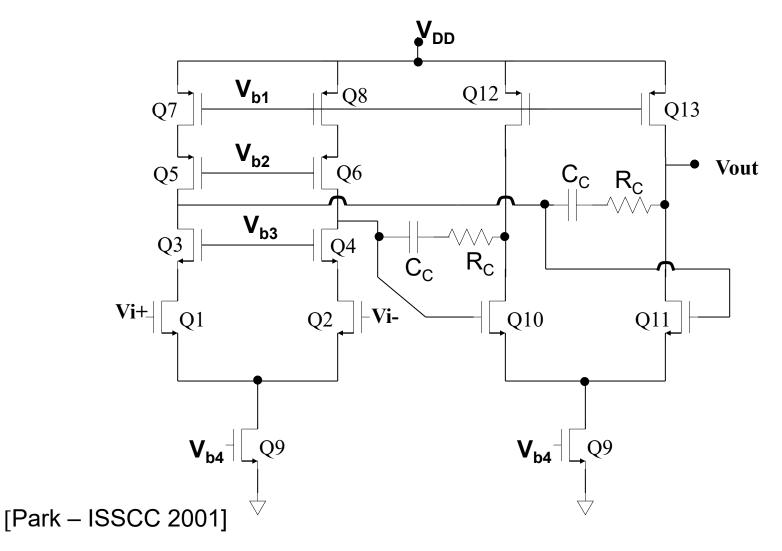
Folded Cascode Amplifier



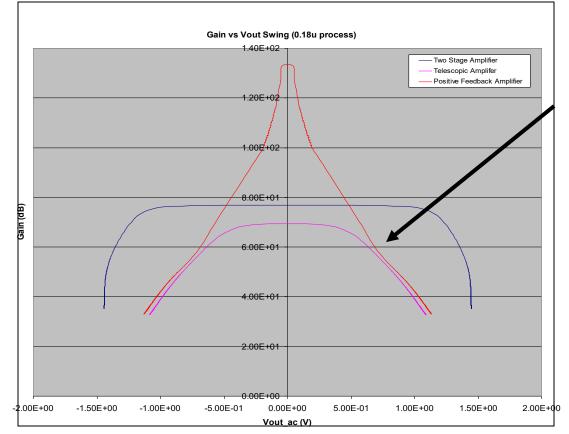
CMFB Not Shown


Gain-Boosted Telescopic Cascode


Gain-Boosted Folded Cascode


-g_m Compensation Implementation

-gm Compensated Single-Stage


Two-Stage Cascode/Cascade

Amplifier Nonlinearity Becoming Increasingly Significant as V_{DD} Reduced

Comparison of amplifiers at same power

level and same V_{EB}

Drop in gain seriously degrades linearity and spectral performance

- Nonlinearity strongly architecture dependent
- Trade-Offs between Gain and Signal Swing

How Much Gain?

Depends upon how much of the overall error budget is allocated to the effect noninfinite gain has on required performance parameters

If require n ENOB, can ½ LSB be allocated to effects of op amp gain error?

e.g. If INL specification of a 12-bit ADC is $\frac{1}{2}$ LSB, can $\frac{1}{2}$ LSB be allocated to the noninfinite gain error?

Sources that may contribute to INL errors in pipelined ADC:

Finite Op Amp Gain Capacitor Missmatch Incomplete amplifier settling Amplifier nonlinearity Input S/H error Parasitic capacitance nonlinearity Offset voltage (in ADC, DAC, summer) DAC errors ADC nonlinaritry

Error Budgeting

Sources that may contribute to INL errors in pipelined ADC:

Finite Op Amp Gain Capacitor Missmatch Incomplete amplifier settling Amplifier nonlinearity Input S/H error Parasitic capacitance nonlinearity Offset voltage (in ADC, DAC, summer) DAC errors ADC nonlinaritry

If entire error budget (e.g. ½ LSB) is allocated to the Finite Op Amp Gain, what error budget must be allocated to all remaining contributors?

What will happen if each error source is allocated an error budget of (e.g. ½ LSB)?

How should the error sources contribution to overall error budget be allocated?

$$\sum_{i=1}^{m} e_i = \frac{1}{2} LSB \quad \text{(maybe a little bit overly conservative)}$$

40

What type of error budget is used by industry?

Is ENOB equal to the specified number of bits of resolution?

Is it easy to add one additional ENOB of resolution to a given design ?

Why is the ENOB often less than the specified number of bits?

Will consider one example only, others may have ENOB closer or farther from specified resolution

INL-based ENOB ENOB = n_R -1-log₂(v)

Consider an ADC with specified resolution of n_R and INL of v LSB

V	ENOB
1/2	n _R
1	n _R -1
2	n _R -2
4	n _R -3
8	n _R -4
16	n _R -5

Though based upon the continuous-INL definition, often used to define ENOB from INL v

16-Bit, 200 MSPS/250 MSPS Analog-to-Digital Converter

Data Sheet

\$120 in 1000's

 $\log_2(3.5)=1.85$

AD9467

FEATURES

75.5 dBFS SNR to 210 MHz at 250 MSPS 90 dBFS SFDR to 300 MHz at 250 MSPS SFDR at 170 MHz at 250 MSPS 92 dBFS at -1 dBFS 100 dBFS at -2 dBFS

60 fs rms jitter Excellent linearity at 250 MSPS

 $DNL = \pm 0.5 LSB typical$

INL = ±3.5 LSB typical

2 V p-p to 2.5 V p-p (default) differential full-scale

input (programmable)

Integrated input buffer

External reference support option

Clock duty cycle stabilizer

Output clock available

Serial port control

Built-in selectable digital test pattern generation

Selectable output data format

LVDS outputs (ANSI-644 compatible)

1.8 V and 3.3 V supply operation

APPLICATIONS

Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Communications instrumentation

FUNCTIONAL BLOCK DIAGRAM

ENOB = n_{R} -1- $log_{2}(v)$ = 16-1-1.85 \approx 13.15

Is this close to 16-bit performance?

A data clock output (DCO) for capturing data on the output is provided for signaling a new output bit.

The internal power-down feature supported via the SPI typically consumes less than 5 mW when disabled.

Optional features allow users to implement various selectable operating conditions, including input range, data format select, and output data test patterns.

The AD9467 is available in a Pb-free, 72-lead, LFCSP specified over the -40°C to +85°C industrial temperature range.

Can we depend on this "13-bit" INL performance?

SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Table 1.						
Parameter ¹	Temp	Min	Тур	Max	Unit	
RESOLUTION		16			Bits	
ACCURACY						
No Missing Codes	Full		Guarantee	d		
Offset Error	Full	-200	0	+200	LSB	
Gain Error	Full	-3.9	-0.1	+2.6	%FSR	
Differential Nonlinearity (DNL) ²	Full	-0.9	±0.5	+1.5	LSB	$\log_2(12)=3.58$
Integral Nonlinearity (INL) ²	Full	-12	±3.5	+12	LSB	······································
TEMPERATURE DRIFT						
Offset Error	Full		±0.023		%FSR/°C	
Gain Error	Full		±0.036		%FSR/°C	
ANALOG INPUTS						
Differential Input Voltage Range (Internal VREF = 1 V to 1.25 V)	Full	2	2.5	2.5	V p-p	
Common-Mode Voltage	25°C		2.15		V	
Differential Input Resistance	25°C		530		Ω	
Differential Input Capacitance	25°C		3.5		pF	
Full Power Bandwidth	25°C		900		MHz	
XVREF INPUT						
Input Voltage	Full	1		1.25	V	
Input Capacitance	Full		3		pF	
POWER SUPPLY						
AVDD1	Full	1.75	1.8	1.85	V	
AVDD2	Full	3.0	3.3	3.6	V	
AVDD3	Full	1.7	1.8	1.9	V	
DRVDD	Full	1.7	1.8	1.9	V	
I _{AVD1}	Full		567	620	mA	
AVDD2	Full		55	61	mA	
I _{AVDD3}	Full		31	35	mA	
I _{DRVDD}	Full		40	43	mA	
Total Power Dissipation (Including Output Drivers)	Full		1.33	1.5	W	
Power-Down Dissipation	Full		4.4	90	mW	

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed. ² Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

ENOB = n_{R} -1-log₂(v) = 16-1-3.58 \approx 11.42

From INL viewpoint, performance of marketed parts could be about 4.5 bits less than physical resolution but does have other attractive properties

AC SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Parameter ¹	Temp	Min	Typ Max	Unit
ANALOG INPUT FULL SCALE		2.5	2/2.5	Vp-p
SIGNAL-TO-NOISE RATIO (SNR)				
$f_{IN} = 5 MHz$	25°C		74.7/76.4	dBFS
$f_{\rm H} = 97 \rm MHz$	25°C		74.5/76.1	dBFS
$f_{\rm IN} = 140 \rm MHz$	25°C		74.4/76.0	dBFS
f _N = 170 MHz	25°C	73.7	74.3/75.8	dBFS
	Full	71.5		dBFS
f _N = 210 MHz	25°C		74.0/75.5	dBFS
f _N = 300 MHz	25°C		73.3/74.6	dBFS
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)				
f _{IN} = 5 MHz	25°C		74.6/76.3	dBFS
f _N = 97 MHz	25°C		74.4/76.0	dBFS
f _N = 140 MHz	25°C		74.4/76.0	dBFS
$f_{\rm IN} = 170 \rm MHz$	25°C	72.4	74.2/75.8	dBFS
	Full	71.0		dBFS
f _N = 210 MHz	25°C		73.9/75.4	dBFS
TN = 300 MHz	25°C		/3.1//4.4	OBES
EFFECTIVE NUMBER OF BITS (ENOB)				
	25°C		12.1/12.4	Bits
$f_{N}=5 MHz$ • Can be defined different ways	25°C		12.1/12.3	Bits
· · · · · · · · · · · ·	25°C		12.1/12.3	Bits
$f_{N} = 140 \text{ MHz}$ • Only given as typical	25°C		12.0/12.3	Bits
	Full	11.5		Bits
f _{N=210 MHz} • Only specified at 25C	25°C		12.0/12.2	Bits
f _N = 300 MHz	25°C		11.9/12.1	Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)				
f _{IN} = 5 MHz	25°C		98/97	dBFS
fn = 97 MHz	25°C		95/93	dBFS
f _N = 140 MHz	25°C		94/95	dBFS
f _N = 170 MHz	25°C	82	93/92	dBFS
	Full	82		dBFS
$f_{\rm H} = 210 \rm MHz$	25°C		93/92	dBFS
f _N = 300 MHz	25°C		93/90	dBFS
SFDR (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)				
fn = 5 MHz at -2 dB Full Scale	25°C		100/100	dBFS
$f_N = 97 \text{ MHz at} - 2 \text{ dB Full Scale}$	25°C		97/97	dBFS
f _N = 140 MHz at-2 dB Full Scale	25°C		100/95	dBFS
$f_{\rm N} = 170 \rm MHz$ at $-2 \rm dB$ Full Scale	25°C		100/100	dBFS
$f_N = 210 \text{ MHz at} - 2 \text{ dB Full Scale}$	25°C		93/93	dBFS
$f_N = 300 \text{ MHz}$ at -2 dB Full Scale	25°C		90/90	dBFS
WORST OTHER (EXCLUDING SECOND AND THIRD HARMONIC DISTORTION)				
$f_N = 5 \text{ MHz}$	25°C		98/97	dBES
$f_N = 97 \text{ MHz}$	25°C		97/93	dBFS
$f_N = 140 \text{ MHz}$	25°C		97/95	dBFS
$f_{\rm N} = 140 \text{ MHz}$ $f_{\rm N} = 170 \text{ MHz}$	25°C	88	97/93	dBFS
18 = 170 Milz	Full	82	21123	dBFS
	Full	02		
f _N = 210 MHz	25°C		97/95	dBFS

How Much Gain?

Conventional Approach: Assume want to make at most $\frac{1}{2}$ LSB error in closed loop gain at each stage

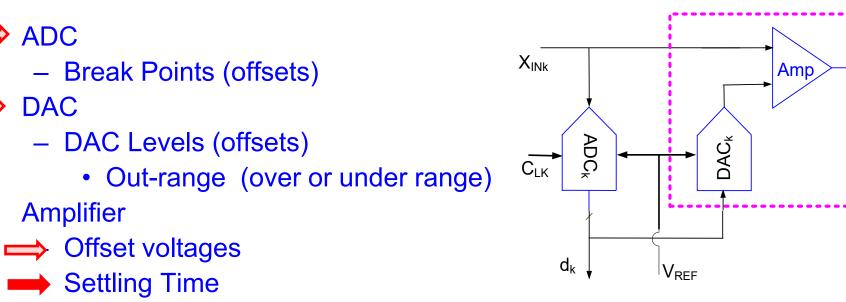
Often see authors use

$$A_{_{\scriptscriptstyle \mathrm{dB}}}\cong 6n_{_{\scriptscriptstyle \mathrm{ST}}}+12$$

- Gives no information about drop in gain at boundary of input/output window
- Not dependent upon architecture ?
- Maybe uses too much error budget on gain
- Errors accumulate since gain errors will exist on each stage
- No indication how A_{dB} relates to INL or DNL
- Gain requirements are large on the input buffer ($n_{ST}=n$) but will be significantly relaxed on latter stages in the pipeline when n_{ST} decreases

Pipelined Data Converter Design Guidelines

Issue

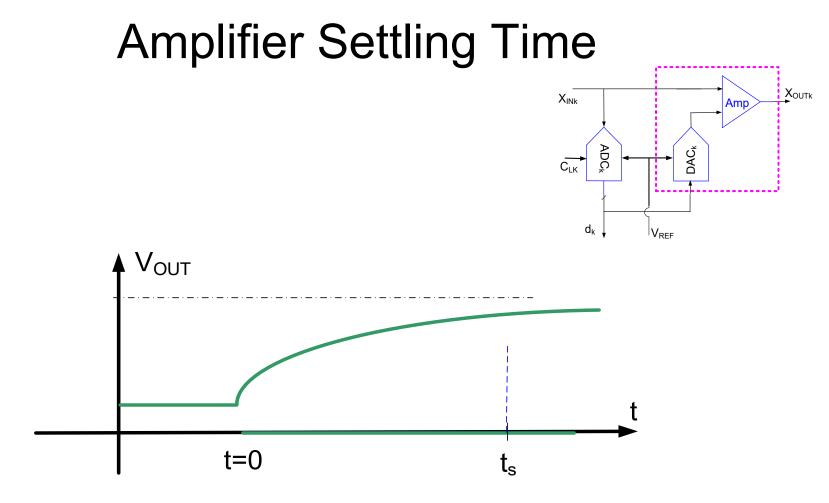

- 1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
- 2. Op Amp Gain causes finite gain errors and introduces noninearity

Strategy

- 1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. a) Select op amp architecture that has acceptable signal swing

b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors

Performance Limitations of Pipelined ADCs (consider amplifier, ADC and DAC issues)

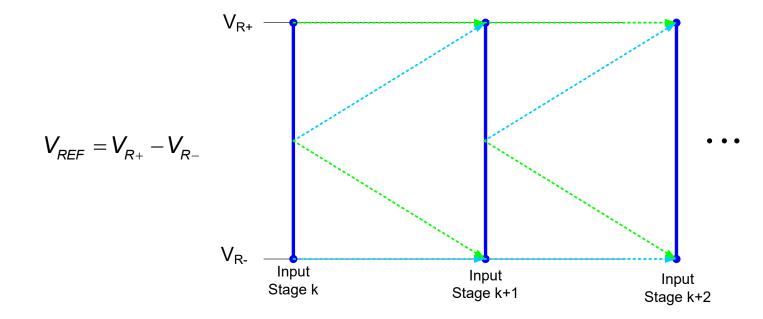

- Nonlinearity (primarily open loop)
- ➡ Open-loop
- → Out-range
- → Gain Errors

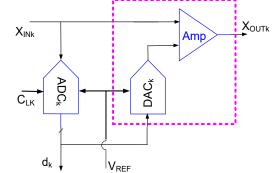
 \implies ADC

DAC

- Inadequate open loop gain
- Component mismatch
- Power Dissipation
- kT/C switching noise

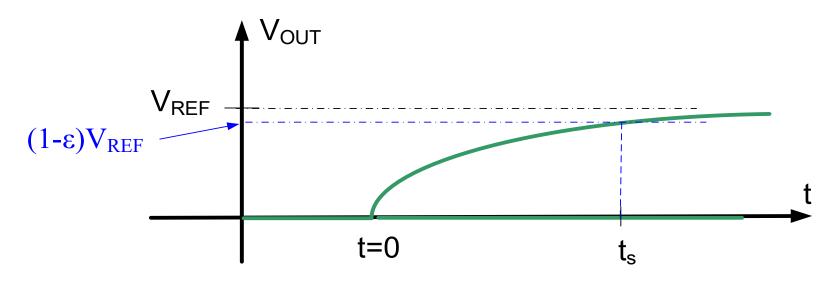
X_{OUTk}



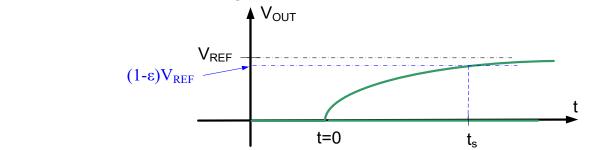

- Can show that no distortion is introduced in pipelined ADC if the amplifier settling is linear (i.e. don't worry about incomplete settling)
- But invariably slew rate and op amp nonlinearities will cause settling to be nonlinear
- Since can't guarantee linear settling, must design for complete settling

Amplifier Settling Time

Worst Case Settling


- Neglect over-range protection (could be up against over-range limit)
- Occurs when input causes <u>output</u> to swing from 0 to V_{REF}

Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step on output in each stage


Note: This may not be quite good enough since allocating total error budget to settling of each stage

Compensated Operational Amplifier can be approximately modeled by

$$\mathsf{A}_{_{OL}}(s) \cong \frac{\mathsf{A}_{_{o}}\mathsf{p}_{_{_{F}}}}{\mathsf{s+p}_{_{_{F}}}} = \frac{\mathsf{G}\mathsf{B}}{\mathsf{s+p}_{_{_{F}}}}$$

Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step in each stage

$$A_{OL}(s) \cong \frac{A_{O}p_{OL}}{s+p_{OL}} = \frac{GB}{s+p_{OL}} \qquad A_{FB}(s) = \frac{A_{O}p_{OL}}{s+p_{OL}+\beta A_{O}p_{OL}} \cong \frac{GB}{s+\beta GB}$$

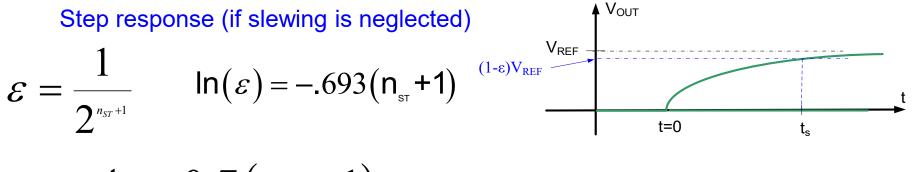
Step response (if slewing is neglected and dc gain large)

$$r(t) = F + (I - F) e^{-\beta GBt_{s}}$$

$$V_{REF} (1 - \varepsilon) = V_{REF} (1 - e^{-\beta GBt_{s}})$$

$$1 - \varepsilon = 1 - e^{-\beta GBt_{s}}$$

$$\varepsilon = e^{-\beta GBt_{s}}$$

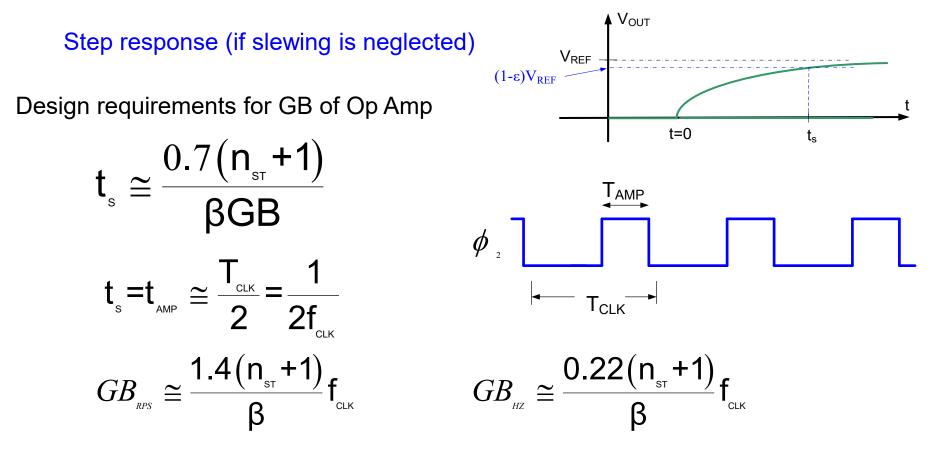

$$t_{s} = -\frac{\ln(\varepsilon)}{\beta GB}$$

or, in terms of the time constant τ of closed loop amplifier

$$\mathbf{t}_{s} = -\tau \ln(\varepsilon)$$
⁵⁴

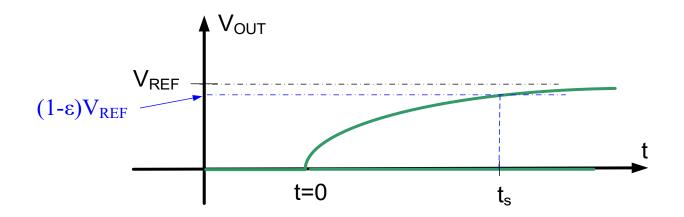
Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step in each stage

Define n_{ST} to be the number of bits of resolution at the residue output of a stage


$$\mathbf{t}_{s} \cong 0.7 (n_{s\tau} + 1) \tau$$

- linear increase in settling requirements with n_{ST}
- n_{ST} determined by accuracy requirements at residue output of a stage

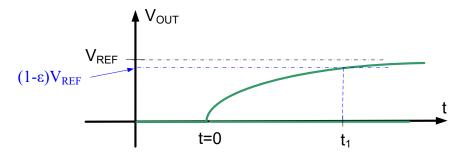
Still need design requirements for GB of Op Amp


$$\mathsf{t}_{_{\mathrm{s}}} \cong \frac{0.7(\mathsf{n}_{_{\mathrm{s}\mathrm{T}}}+1)}{\beta \mathsf{GB}}$$

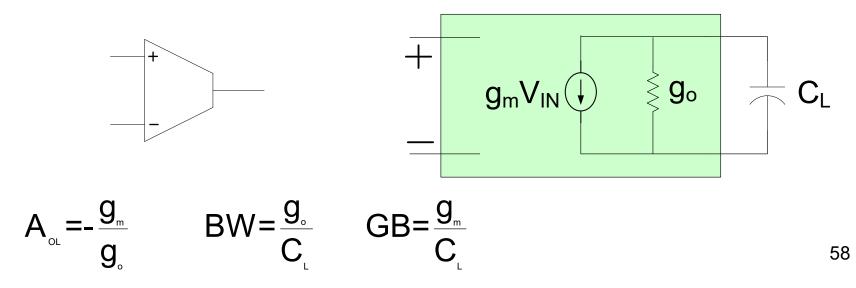
Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step in each stage

Note: GB requirements drop from stage to stage

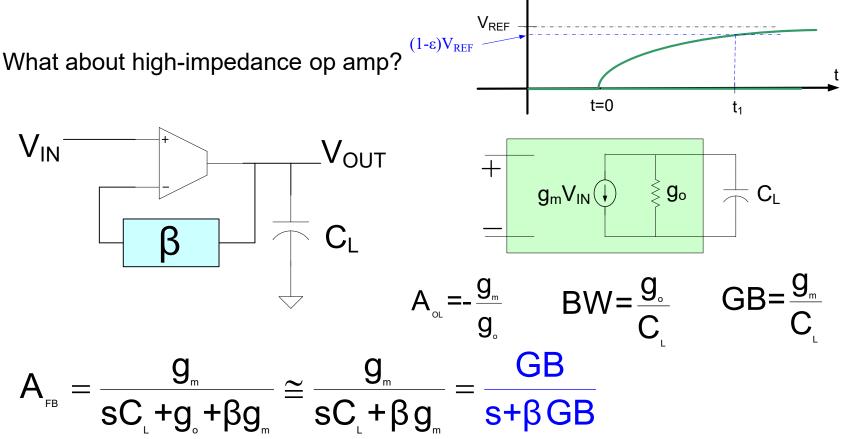
Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step in each stage



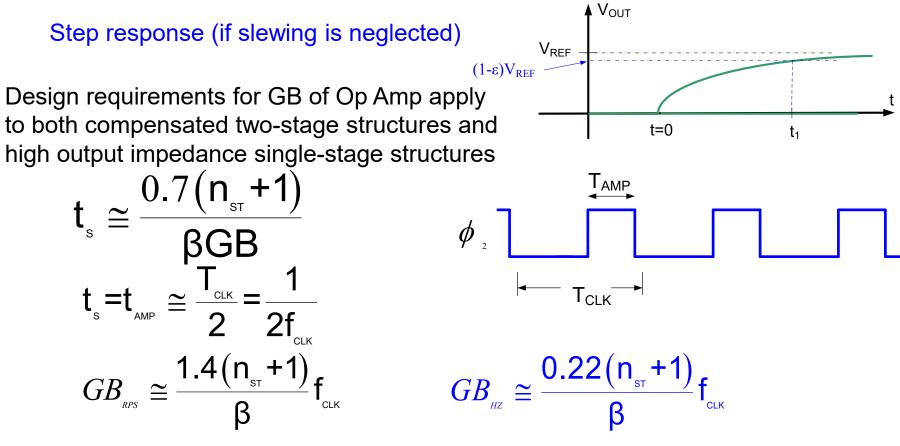
Compensated Operational Amplifier can be approximately modeled by


$$A(s) \cong \frac{A_{o}p_{F}}{s+p_{F}} = \frac{GB}{s+p_{F}}$$

What about high-impedance op amp?


Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step at each stage

What about high-impedance op amp driving capacitive load (including β network)?



Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step

Note this is identical in form to that from the internally compensated op amp ⁵⁹

Conventional Approach: Assume want to make at most ½ LSB error in settling for worst-case step

60

Notes: May be over-using error budget Slewing will modestly slow response

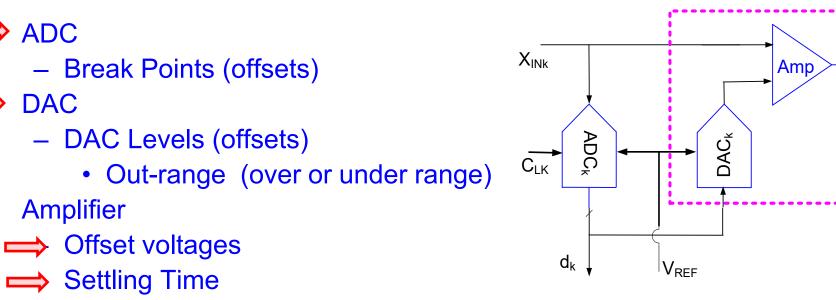
Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate

2. Op Amp Gain causes finite gain errors and introduces noninearity

3. Op amp settling must can cause errors


Strategy

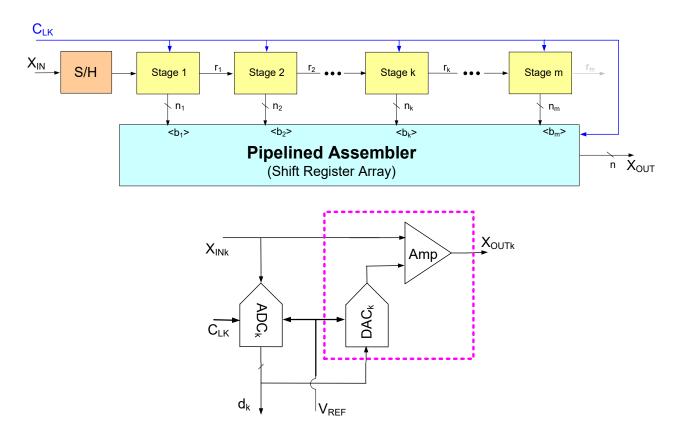
- 1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. a) Select op amp architecture that has acceptable signal swing

b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors

3. Select GB to meet settling requirements (degrade modestly to account for slewing)

Performance Limitations of Pipelined ADCs (consider amplifier, ADC and DAC issues)

- Nonlinearity (primarily open loop)
 - → Open-loop
 - → Out-range
- → Gain Errors

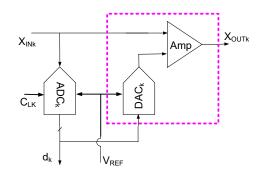

→ ADC

DAC

- Inadequate open loop gain
- Component mismatch
- Power Dissipation
 - kT/C switching noise

X_{OUTk}

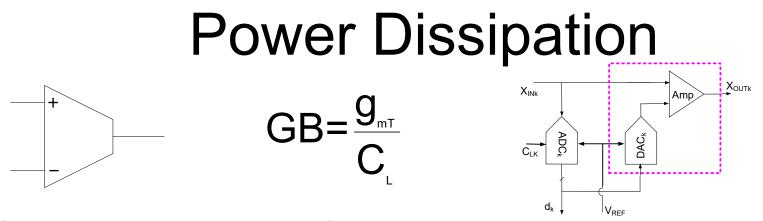
Power Dissipation



Dominant source of power dissipation is in the op amps in S/H and individual stages

Power Dissipation

- Power dissipation strongly dependent upon op amp architecture and design
- Power budgets critical and even a net 5% savings in power is significant!


Consider a single stage in the pipeline

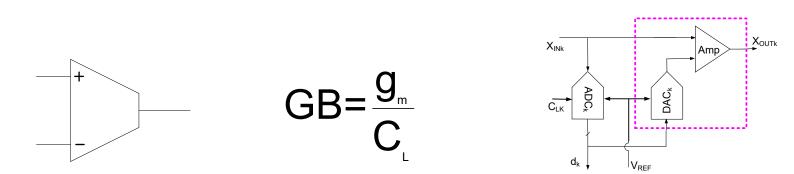
Consider single stage open-loop op amp structures (e.g. telescopic cascode)

$$A_{OL} = -\frac{g_{mT}}{g_{OT}} \qquad P_{OP AMP} \cong 2I_{DQ} \left(\bigvee_{DD} - \bigvee_{SS} \right)$$
Power increases linearly with I_{DQ}
For MOS implementation with basic reference SE op amp
$$= -\frac{2I_{DQ}}{V_{EB}} \frac{1}{2\lambda I_{DQ}} = -\frac{1}{\lambda V_{EB}}$$
No power implications on dc gain of op amp
$$\cdot \text{ Pick } V_{EB} \text{ small to increase gain}$$

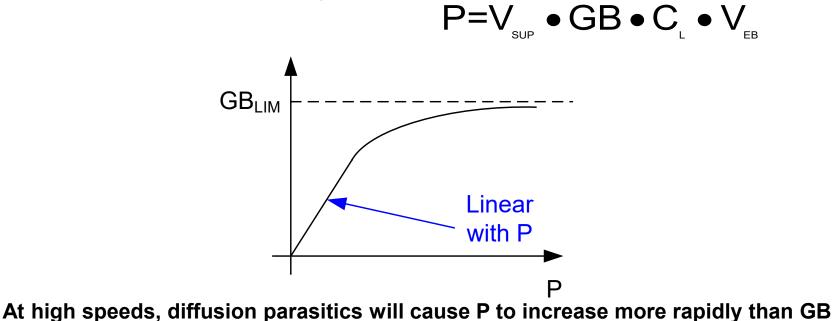
$$\cdot \text{ Pick } V_{EB} \text{ small to increase gain}$$

 C_L is the parallel combination of any interconnect capacitance, the capacitance of the β network and the sampling capacitance of the following stage

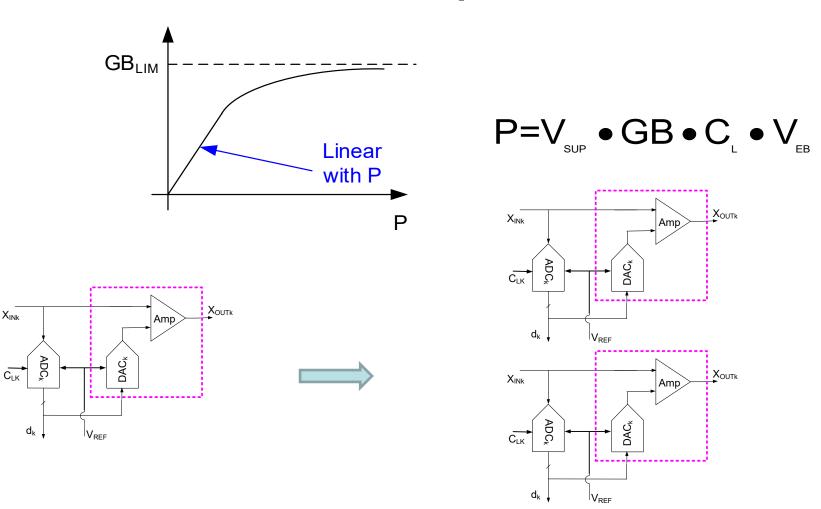
For MOS implementation (with ref SE op amp or telescopic cascode op amp)

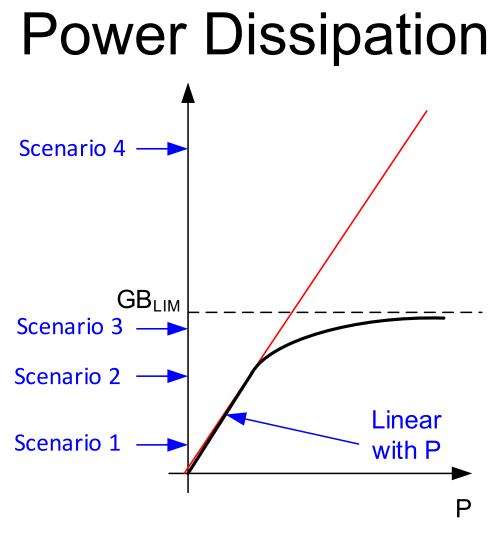

$$GB = \frac{2I_{DQ}}{V_{EB}C_{L}} = \left(\frac{1}{(V_{DD}-V_{SS})}\frac{P}{C_{L}}\right)\frac{1}{V_{EB}}$$
$$P = V_{SUP} \bullet GB \bullet C_{L} \bullet V_{EB}$$

For convenience, define

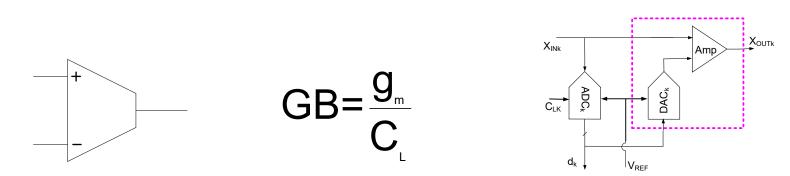

$$V_{SUP} = V_{DD} - V_{SS}$$

- Keep V_{EB} small, C_L as small as possible, GB as small as possible
- At high speeds, diffusion parasitics will cause P to increase more rapidly than GB
- Total amplifier power is sum of power in each stage


Power Dissipation


For single-stage MOS implementation (with ref SE op amp or telescopic cascade op amp)

Power Dissipation

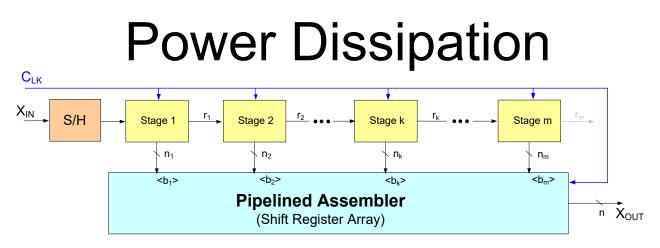

Interleaving can dramatically reduce power requirements (e.g. two interleaved stages reduce GB requirements a factor of 2 on each stage thereby maintaining power requirements on linear slope region) for high speed data converters but introduces some calibration challenges

GB_{LIM} strongly technology dependent

What do we do if system requirements are in the respective scenarios?

Power Dissipation

For Single-stage MOS implementation (with ref SE op amp or telescopic cascade op amp)


architecture-dependent term

Power Dissipation CLK X_{IN} \mathbf{r}_1 S/H Stage 1 Stage 2 Stage k Stage m n_1 n_2 n_k n_m <b₂> <b⊧> <b_> <b₁> **Pipelined Assembler** n X_{OUT} (Shift Register Array)

For Single-stage MOS implementation (with ref SE op amp or telescopic cascade op

$$P = \begin{bmatrix} V_{SUP} \bullet GB \bullet C_{L} \end{bmatrix} \begin{bmatrix} V_{EB} \end{bmatrix} \qquad GB_{HZ} \cong \frac{0.22(n_{ST} + 1)}{\beta} f_{CLK}$$

Fixed by ADC requirements

- n_{ST} =n for S/H thus S/H is a major power consumer
- Use energy efficient op amp architecture
- Power increases linearly with GB (even faster at high frequencies)
- Interleaving can reduce power dissipation at high frequencies(and extend effective clock speed)
- Power increases linearly with clock speed (or worse at high frequencies)
- Power can be scaled down in latter stages since ${\rm n}_{\rm ST}$ will decrease
- Amplifiers can be shared between stages or switched off when not used (factor of 2!)
- Using more than one bit/stage will reduce power since no of op amps will decrease (offsets decrease in β)
- Elimination of S/H will have dramatic effect on power reduction

For Single-stage MOS implementation (with ref SE op amp or telescopic cascade op amp)

$$\mathsf{P} = \begin{bmatrix} \mathsf{V}_{\text{SUP}} \bullet \mathsf{GB} \bullet \mathsf{C}_{\text{L}} \end{bmatrix} \begin{bmatrix} \mathsf{V}_{\text{EB}} \end{bmatrix} \qquad GB_{\text{HZ}} \cong \frac{0.22(\mathsf{n}_{\text{sT}} + 1)}{\beta} \mathsf{f}_{\text{CLK}}$$

Fixed by ADC requirements

Which op amp architectures are most energy efficient?

- Depends upon β
- For smaller β , two-stage are more energy efficient for larger β single-stage are better
- Must optimize power in any given architecture
- Folding reduces efficiency (typically by 30% to 50%)

Stay Safe and Stay Healthy !

End of Lecture 24

End of Lecture 21 From Spring 2019